SOME NEW PROPERTIES OF GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

Dr. A. Muthulakshmi, Assistant Professor, PG Department of Mathematics, Yadava College (Autonomous), Madurai-625014.
Dr. B. Vasudevan, Assistant Professor, PG Department of Mathematics, Yadava College (Autonomous), Madurai-625014.

Dr. S. Rajeev Gandhi, Assistant Professor, Department of Mathematics, V H N Senthikumara Nadar College (Autonomous), Virudhunagar-626001

ABSTRACT:

In this article, we presented the new class of generalized closed sets called \tilde{a} - closed and $g\tilde{a}$ -cld which contains the above-mentioned class. We also examine the connections between related generalized closed sets.

Keywords: gã-cld, gã-cld, gsp-cld, gs-cld, sg-cld.

INTRODUCTION :

As a generalization of closed sets, Levine [11] introduced generalized closed sets in general topology. This concept was seen as beneficial, and numerous results advanced generalized topology as a whole. In topological spaces, \hat{g} -closed was introduced by numerous researchers, such as Veerakumar [19]. In topological spaces, ω -closed was first introduced by Sheik John [17]. Andrijevic, D [2], introduced the some properties of the topology of \Box -sets and Arya, S. P. and Gupta, R [4], introduced the on strongly continuous mappings. Following the introduction of these concepts, generalized topology focused on the main characteristics of various types of generalized closed. Carnation, D [6], introduced the some properties related to compactness in topological spaces. Ravi and Ganesan [16] as an additional generalization of closed. They showed that the class of &g-closed appropriately falls between the classes of closed and g-closed. According to Pious Missier et al. [15], introduced by g'''-closed. Noiri, T., Maki, H. and Umehara, J [14], introduced the generalized preclosed functions.

In this article, we presented the new class of generalized closed sets called \tilde{a} - closed and $g\tilde{a}$ -cld which contains the above-mentioned class. We also examine the connections between related generalized closed sets.

PRELIMINARIES:

Throughout this paper (X, \Box) , (Y, \Box) and (Z, \Box) (or X, Y and Z) represent topological spaces (briefly, TPS) on which no separation axioms are assumed unless otherwise mentioned.

We recall the following definitions which are useful in the sequel.

Definition 2.1

- A subset T of a space X is said to be:
- (i) semi-open [10] if $T \square cl(int(T))$;
- (ii) \Box -open [13] if T \Box int(cl(int(T)));
- (iii) semi-preopen [1, 7] if T \Box cl(int(cl(T)));
- (iv) regular open [18] if T = int(cl(T)).

Definition 2.2

A subset T of a space X is said to be:

(i) a generalized closed (briefly g-cld) [11] if $cl(T) \square$ whenever $T \square P$ and P is open.

- (ii) a generalized semiclosed (briefly gs-cld)[3, 8] if $scl(T) \square P$ whenever $T \square P$ and P is open.
- (iii) a \Box -generalized closed (briefly \Box g-cld) [12] if \Box cl(T) \Box P whenever T \Box P and P is open.
- (iv) a generalized semi-preclosed (briefly gsp-cld) [9] if $spcl(T) \square P$ whenever $T \square P$ and P is open.
- (v) a semi-generalized closed (briefly sg-cld) [5] if scl(T) □ P whenever T □ P and P is semi-open.

1. gã-CLOSED SETS

We introduce the definition of generalized \tilde{a} -closed sets in TPS and study of such sets. **Definition 3.1**

A subset T of a TPS is called

(i) a \tilde{a} -closed (briefly \tilde{a} -cld) if cl(T) \Box P whenever T \Box P and P is sg-open.

(ii) a generalized \tilde{a} -closed (briefly $g\tilde{a}$ -cld) if cl(int(T)) \Box P whenever T \Box P and P is sgopen.

Theorem 3.2

Any closed \Box g \tilde{a} -cld but reverse is not true.

Proof

Let T be a closed set. Then cl(T)=T. Let $T \subseteq P$ and P be sg-open. Since $int(T) \subseteq T$, $cl(int(T)) \subseteq cl(T) = T$. We have $cl(int(T)) \subseteq T \subseteq P$ whenever $T \subseteq P$ and P is sg-open. Hence T is $g\tilde{a}$ -cld.

Example 3.3

Let $X = \{i_1, s_1, d_1\}$ and $\Box = \{\Box, \{i_1\}, \{s_1\}, \{i_1, s_1\}, X\}$. Then the set $\{i_1, s_1\}$ is $g\tilde{a}$ -cldset but not closed.

Theorem 3.4

Any \tilde{a} -cld \Box g \tilde{a} -cld but reverse is not true.

Proof

The proof is straight forward.

Example 3.5

In Example 3.3, the set $\{i_1, s_1\}$ is $g\tilde{a}$ -cld set but not \tilde{a} -cld in X.

Theorem 3.6

Any regular cld \Box g \tilde{a} -cld but reverse is not true.

Proof

Let T be any regular cld set and let *B* be gs-open set containing T. Since T isregular cld, we have $T = cl(int(T)) \Box U$. Thus, T is $g\tilde{a}$ -cld.

Example 3.7

In Example 3.3, the set $\{i_1\}$ is $g\tilde{a}$ -cld but not regular cld in X.

Theorem 3.8

Any $g\tilde{a}$ -cld \Box gsp-cld but reverse is not true.

Proof

Let T be any $g\tilde{a}$ -cld and B be open set containing T. Then B is a sg-open containing T and cl(int(T)) \Box B. Since B is open, we get int(cl(int(T))) \Box B which implies spcl(T) = T \Box int(cl(int(T))) \Box U. Thus, T is gsp-cld.

Example 3.9

Let $X = \{i_1, s_1, d_1\}$ and $\Box = \{\Box, \{i_1\}, \{s_1\}, \{i_1, s_1\}, X\}$. Then the set $\{i_1\}$ is gsp-cldbut not $g\tilde{a}$ -cld.

Theorem 3.10

If a subset T of a *TPS* X is both closed and \Box g-cld, then it is $g\tilde{a}$ -cld in X.

Proof

Let T be an \Box g-cld set in X and B be an open set containing T. Then $B \Box \Box \Box cl(T) = T$

 \Box cl(int(cl(T))). Since T is closed, $B \Box$ cl(int(T)) and hence T is $g\tilde{a}$ -cldin X.

Theorem 3.11

If a subset T of a *TPS* X is both open and $g\tilde{a}$ -cld, then it is closed.

Proof

Since T is both open and $g\tilde{a}$ -cld, T \Box cl(int(T)) = cl(T) and hence T is closed in X.

Corollary 3.12

If a subset T of a *TPS* X is both open and $g\tilde{a}$ -cld, then it is both regular open and regular cld in X.

Theorem 3.13

A set T is w \tilde{a} -cld if and only if cl(int(T)) \Box T contains no non-empty gs-cld.

Proof

Necessity. Let F be a gs-cld such that $F \square cl(int(T)) \square T$. Since F^c is gs-open and $T \square F^c$, from the definition of w \tilde{a} -cld it follows that $cl(int(T)) \square F^c$. ie. $F \square (cl(int(T)))^c$. This implies that $F \square (cl(int(T))) \square (cl(int(T)))^c = \square$.

Sufficiency. Let $T \square G$, where G is both closed and sg-open set in X. If cl(int(T)) is not contained in G, then $cl(int(T)) \square G^c$ is a non-empty gs-closed subset of $cl(int(T)) \square T$, we obtain a contradiction. This proves the sufficiency and hence the theorem.

Theorem 3.14

Let X be a *TPS* and $T \Box Y \Box X$. If T is open and $g\tilde{a}$ -cld in X, then T is $w\tilde{a}$ - cld relative to Y. **Proof**

Let $T \Box Y \Box G$ where G is gs-open in X. Since T is $g\tilde{a}$ -cld in X, $T \Box G$ implies $cl(int(T)) \Box G$. That is $Y \Box (cl(int(T))) \Box Y \Box G$ where $Y \Box cl(int(T))$ is closure of interior of T in Y. Thus, T is $g\tilde{a}$ -cld relative to Y.

Theorem 3.15

If a subset T of a *TPS* X is nowhere dense, then it is $g\tilde{a}$ -cld.

Proof

Since $int(T) \square int(cl(T))$ and T is nowhere dense, $int(T) = \square$. Therefore $cl(int(T)) = \square$ and hence T is $g\tilde{a}$ -cld in X.

The converse of Theorem 3.15 need not be true as seen in the followingexample.

Example 3.16

Let $X = \{i_1, s_1, d_1\}$ and $\Box = \{\Box, \{i_1\}, \{s_1, d_1\}, X\}$. Then the set $\{i_1\}$ is $g\tilde{a}$ -cld but not nowhere dense in X.

Remark 3.17

The following examples show that $g\tilde{a}$ -cld and semi-closedness are independent.

Example 3.18

In Example 3.16, the set $\{s_1\}$ is $g\tilde{a}$ -cld but not semi-cld in X.

Example 3.19

Let $X = \{i_1, s_1, d_1\}$ and $\Box = \{\Box, \{i_1\}, \{s_1\}, \{s_1\}, X\}$. Then the set $\{s_1\}$ is semi-closed set but not $g\tilde{a}$ -cld in X.

Definition 3.20

A subset T of a *TPS* X is called $g\tilde{a}$ -open set if A^c is $g\tilde{a}$ -cld in X.

Theorem 3.21

Any open set \Box g \tilde{a} -open.

Proof

Let T be an open set in a *TPS* X. Then T^c is closed in X. By Theorem 3.2 itfollows that T^c is $g\tilde{a}$ -cld in X. Hence T is $g\tilde{a}$ -open in X.

The converse of Theorem 3.21 need not be true as seen in the followingexample.

Example 3.22

In Example 3.3, the set $\{d_1\}$ is $g\tilde{a}$ -open set but it 45 not open in X.

Proposition 3.23

- (i) Any \tilde{a} -open set \Box g \tilde{a} -open but reverse is not true.
- (ii) Any regular open \Box g \tilde{a} -open but reverse is not true.
- (iii) Any g-open set \Box g \tilde{a} -open but reverse is not true.
- (iv) Any $g\tilde{a}$ -open set \Box gsp-open but reverse is not true.

It can be shown that the converse of (i), (ii), (iii) and (iv) need not be true.

Theorem 3.24

A subset T of a *TPS* X is $g\tilde{a}$ -open if G \Box int(cl(T)) whenever G \Box T and G is gs-cld.

Proof

Let T be any $g\tilde{a}$ -open. Then T^c is $g\tilde{a}$ -cld. Let G be a sg-cld contained in T. Then G^c is a sg-open set containing T^c. Since T^c is $g\tilde{a}$ -cld, we have $cl(int(T^c)) \square G^c$. Therefore G \square int(cl(T)). Conversely, we suppose that G \square int(cl(T)) whenever G \square T and G is sg- closed. Then G^c is a sg-open set containing T^c and G^c \square (int(cl(T)))^c. It follows that G^c \square cl(int(T^c)). Hence T^c is $g\tilde{a}$ -cld and so T is $g\tilde{a}$ -open.

REFERENCES :

[1] Andrijevic, D.: Semi-preopen sets, Mat. Vesnik, 38 (1986), 24-32.

[2] Andrijevic, D.: Some properties of the topology of □-sets, Mat. Vesnik, 36 (1984), 1-10.

[3] Arya, S. P. and Nour, T. M.: Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717-719.

[4] Arya, S. P. and Gupta, R.: On strongly continuous mappings, Kyungpook Math. J., 14 (1974), 131-143.

[5] Bhattacharya, P. and Lahiri, B. K.: Semi-generalized closed sets in topology, Indian J. Math., 29(3) (1987), 375-382.

[6] Carnation, D.: Some properties related to compactness in topological spaces, Ph. D. Thesis, University of Arkansas, 1977.

[7] Crossley, S. G. and Hildebrand, S. K.: Semi-closure, Texas J. Sci., 22 (1971), 99-112.

[8] Devi, R.: Studies on generalizations of closed maps and homeomorphisms in topological spaces, Ph. D Thesis, Bharathiar University, Coimbatore (1994).

[9] Dontchev, J.: On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 16 (1995), 35-48.

[10] Levine N.: Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.

[11] Levine N.: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.

[12] Maki, H., Devi, R. and Balachandran, K.: Associated topologies of generalized \Box -closed sets

and \Box -generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15 (1994), 51-63.

[13] Njastad, O.: On some classes of nearly open sets, Pacific J. Math., 15 (1965),

961-970.

[14] Noiri, T., Maki, H. and Umehara, J.: Generalized preclosed functions, Mem. Fac. Sci. Kochi Univ. Math., 19 (1998), 13-20.

[15] Pious Missier, S., Ravi, O. and. Herin Wise Bell, P.: $g \square \square \square$ -closed sets in topology (communicated).

[16] Ravi, O. and Ganesan, S.: *ÿ*-closed sets in topology, International Journal of Computer Science and Emerging Technologies, 2(3) (2011), 330-337.

[17] Sheik John, M.: A study on generalizations of closed sets and continuous maps n topological and bitopological spaces, Ph. D Thesis, Bharathiar University, Coimbatore, September 2002.

[18] Stone, M. H.: Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 374-481.

[19] Veera Kumar M. K. R. S.: $g^{\circ} \square$ closed sets⁴ fn topological spaces,